In purchase to assess how diminished CoREST1 degrees affected tumor development, we injected control or shCoREST1 cells into the mammary unwanted fat pads of NOD/SCID mice. Notably, the tumor incidence for mice injected with shCoREST1 cells was reduced to117570-53-3 structure only fifty%, in contrast to one hundred% for mice injected with shCtrl cells (p<0.001 Fig. 1C). In knockdown of CoREST1 reduced MDA-MB-231 tumor formation. MDA-MB-231 cells were transduced with lentivirus encoding a control (shCtrl) or either of 2 shRNA constructs targeting CoREST1 (shCoR). (A) CoREST1 expression in MDA-MB-231 cell lines was quantified using RT-qPCR relative to actin expression. Differences were determined using Student's t-test (n = 6 experiments mean.e.m.). (B) Representative image of CoREST1 expression measured by immunoblotting (n>three experiments). (C) NOD/SCID ladies were being injected with shCoR one or shCtrl cells into the fourth mammary glands. Masses greater than three mm in diameter were being defined as tumors (p<0.001, Fischer's exact test). (D) Tumor growth curve from mice injected with shCoR 1 cells compared to shCtrl controls (p<0.005, Mann-Whitney test). (E) At end stage, tumor weights were measured from mice injected with either shCtrl or shCoR 1 cells. Differences were determined by Mann-Whitney test addition, compared to controls, tumors that formed from shCoREST1 cells were significantly smaller in both volume and end stage weight (Fig. 1D, E). These findings demonstrate that depletion of CoREST1 in MDA-MB-231 cells impaired tumor formation and growth in vivo. Pharmacological inhibition or knockdown of the CoREST1 associated factor LSD1 has been shown to inhibit proliferation in several breast cancer cell lines, including MDA-MB-231 cells [16,17,39]. CoREST1 has been suggested to regulate LSD1 levels and stability [40] and, consistent with this, we observed reduced LSD1 levels in shCoREST1 cells compared to controls (S1 Fig.). Thus, we considered the possibility that knockdown of CoREST1 expression may lead to diminished cellular proliferation in MDA-MB-231 cells. However, in vitro, we observed no significant differences in cellular proliferation or morphology in shCoREST1 cells compared with control cells (S1 Fig.). Further, tumors that formed from shCoREST1 cells demonstrated similar levels of the proliferation marker Ki67 compared with tumors that formed from control cells (Fig. 2A). Taken together, these results suggest that the striking inhibition of tumor formation in vivo observed upon CoREST1 knockdown was not due to reduced cellular proliferation. Although shCoREST1 tumors were histologically similar to tumors that formed from control cells, shCoREST1 tumors had increased areas of focal necrosis compared with control tumors (Fig. 2B). The presence of these large necrotic areas suggested that reduced CoREST1 expression in the tumor cells may have led to diminished angiogenesis within the tumor parenchyma. Immunostaining for CD31, an endothelial cell marker, revealed that vascular density was significantly reduced in CoREST1 depleted tumors (p<0.01 Fig. 2C). These observations decreased CoREST1 expression reduced tumor angiogenesis. (A) Ki67 expression, a marker of proliferation, was detected in control (shCtrl) and shCoREST1 (shCoR 1) tumors. Percent Ki67 positive nuclei per high power field (HPF) were quantified in three images from each tumor using ImageJ. In this image, Ki67 immunostaining is red and DAPI (to detect nuclei) is blue. (B) Necrosis was quantified on hematoxylin and eosin (H&E) stained slides in tumors that formed from either shCoR or shCtrl cells. Differences were determined using Student's t-test (n = 6 tumors/group). (C) CD31 expression was detected using immunofluorescence in shCoR or shCtrl tumors. CD31 expression (red) was quantified using five high power fields of DAPI positive nuclei (blue) from each tumor. Differences were determined using Student's t-test (n = 3 tumors/group). Scale bar = 100m suggest that CoREST1 expression may promote tumor growth by enhancing angiogenesis in the tumor microenvironment.We hypothesized that CoREST1 might modulate the tumor microenvironment through the regulated expression of factors secreted by the tumor cell. Therefore, we carried out a screen to compare the secretomes of shCoREST1 and control MDA-MB-231 cells using a human angiogenesis antibody array that allowed for simultaneous evaluation of 55 secreted factors (S2 Table). CoREST1 knockdown resulted in striking changes in the tumor cell conditioned media including notable decreases in levels of secreted pro-angiogenic factor vascular endothelial growth factor A (VEGF-A), pro-inflammatory factors CCL2/MCP-1 and CXCL16, as well as anti-angiogenic factor thrombospondin 1 (TSP1) compared to conditioned media from control cells (Fig. 3A, B). Thus, knockdown of CoREST1 leads to striking changes in of the levels of both pro- and anti- angiogenic and inflammatory factors secreted by these breast cancer cells. Since CoREST1 is known to regulate chromatin structure and gene expression, we investigated whether some of the observed changes in levels of secreted angiogenic and inflammatory depletion of CoREST1 altered the tumor cell secretome. (A) Conditioned media from shcontrol (shCtrl) and shCoREST1 (shCoR 1) MDA-MB231 cells was incubated with a human angiogenesis antibody array as described in Materials and Methods. Immunoblot images from this screen, performed one time, are shown. (B) Quantification of the relative pixel density on the array for the indicated pro-angiogenic, pro-inflammatory and anti-angiogenic factors secreted by shCtrl and shCoR cell lines (n = 1 experiment). (C) VEGF-A mRNA expression was measured in shCoR cells compared to shCtrl cells in MDA-MB-231 and SUM159 cell lines. (D) CCL2 mRNA expression was measured in the indicated cell lines. Expression levels were detected by RT-qPCR and represented as fold change compared to shCtrl cells. Differences were determined by Student's t-test (mean.d. n = 3 experiments). (E) Luciferase activity from shCtrl or shCoR 1 MDA-MB-231 cells transfected with VEGF-luc or pMCP-luc and pRL-CMV-Renilla. Luciferase expression was normalized to Renilla, then expressed as fold change compared to shCtrl cells. Differences were determined by Student's t-test (mean.d. n = 3 experiments)factors occurred at the mRNA level. RT-qPCR analyses confirmed that mRNA expression of several factors was altered in shCoREST1 cells (S2 Fig.). In particular, we observed that VEGF-A and CCL2 mRNA levels were reduced in shCoREST1 MDA-MB-231 cells (Fig. 3C, D). VEGF-A and CCL2 expression were also significantly reduced in response to CoREST1 knockdown of CoREST1 decreased tumor cell-mediated stimulation of endothelial cells in vitro. (A) HUVECs were grown in conditioned media (CM) from shCoREST1 (shCoR) or control (shCtrl) cells on Matrigel for 6 hr to assess changes in tube forming ability. (B) Quantification of tube formation of HUVEC treated with shCtrl or shCoR CM. Tubes from 5 high power fields (HPF) were averaged for each condition tested (n = 3 experiments). (C) HUVEC cells were exposed to CM from shCtrl cells or shCoR cells and wound closure was measured 6 hr after scratching confluent cells as described in Materials and Methods. Data is expressed as % of wound closure as determined from an average of 10 replicates per condition (n = 3 experiments). (D) Proliferation of HUVEC cells after exposure to shCtrl or shCoR CM was determined by counting cells after 72 hours (n = 3 experiments). Differences were determined by Student's t-test (mean.d.). Scale bar = 100m knockdown in another basal-type breast cancer cell line, SUM159 (Fig. 3C, D). Similar to these effects on endogenous mRNAs, we also observed that CoREST1 knockdown reduced expression from luciferase reporters bearing the 5' promoter regions of either VEGFA or CCL2 (Fig. 3E). Together, these results show that CoREST1 acts in at least some basal tumor cells to promote the expression of multiple factors expected to influence the tumor microenvironment.Given the pro-angiogenic role of many of the factors with reduced abundance in the secretome of shCoREST1 cells compared with control cells, we hypothesized that CoREST1 regulates signaling to endothelial cells. We therefore investigated the effects of conditioned media from MD-MBA-231 on human umbilical vein endothelial cells (HUVECs). We exposed HUVECS to conditioned media from control and shCoREST1 MDA-MB-231 cells and measured endothelial tube formation. Conditioned media from shCoREST1 cells significantly reduced tube formation compared with conditioned media from control cells (p<0.01 Fig. 4A, B). Further, conditioned media from shCoREST1 cells significantly reduced HUVEC migration in a wound healing assay (p<0.05 Fig. 4C). No significant differences were detected in the proliferation rate of HUVECs following treatment with conditioned media from shCoREST1 or control cells (Fig. 4D). These results suggest that the altered secretome of shCoREST1 breast cancer cells limited endothelial migration and differentiation to form new blood vessels. Further, these in vitro data suggest that CoREST1 alters angiogenesis within the tumor microenvironment through modulation of the tumor cell secretome.Macrophages play a key role in tumor angiogenesis (for review, [7,41]). Although CCL2 has been shown to have direct effects on endothelial cells and angiogenesis in some models [42?44], CCL2 was first characterized as a potent chemoattractant for macrophages (for review, [45]). We therefore hypothesized that decreased secretion of CCL2, and possibly other factors, by shCoREST1 cells could contribute to reduced angiogenesis through modulation of macrophages in the shCoREST1 tumor microenvironment. We stained shCoREST1 and control tumors for F4/80, a macrophage marker, and quantified expression. Compared with control tumors, shCoREST1 tumors demonstrated significantly decreased macrophage recruitment (p<0.01 Fig. 5A). In vitro, the migration of HL-60-derived macrophages was reduced in response to conditioned media from shCoREST1 cells compared with conditioned media from control cells in transwell assays (Fig. 5B). Consistent with a key role for CCL2 in this process, macrophage migration was significantly reduced in the presence of a blocking antibody for CCL2 (p = 0.0039) as well as upon addition of RS504393, a small molecule inhibitor for the receptor of CCL2 (p = 0.0035 Fig. 5C). These data suggest that one way that CoREST1 modulates the tumor microenvironment is through the recruitment of macrophages via regulation of CCL2 expression. Since tumor activated macrophages (TAMs) secrete factors that promote angiogenesis, we also compared HL-60-derived macrophages activated with conditioned media from either shCoREST1 or control breast cancer cells. We collected conditioned media from the activated macrophages and tested the ability of their secreted factors to promote the growth and migration of HUVEC cells. Compared with macrophages treated with control conditioned media, macrophages primed with conditioned media from shCoREST1 cells had significantly reduced ability to promote HUVEC tube-formation as well as migration in a wound healing assay (Fig. 5D, E). Similar to treatment of HUVEC with conditioned media from shCoREST1 tumor cells, shCoREST1 activated macrophage conditioned media did not significantly alter HUVEC proliferation (Fig. 5F). Together, these data suggest that CoREST1 acts in breast tumor cells to alter the tumor secretome, thereby promoting tumor vascularity through both tumor cell-mediated angiogenesis as well as through the recruitment and activation of pro-angiogenic macrophages.Developing tumors require interactions with the surrounding microenvironment for progression to malignancy. Our findings reveal that the transcriptional regulator CoREST1 promotes tumorigenesis by enhancing angiogenesis. We found that CoREST1 regulates the expression of tumor cell secreted factors to promote angiogenesis through direct effects on endothelial cells as well as indirect effects via the recruitment and activation of tumor associated macrophages (TAMs). Knockdown of CoREST1 in MDA-MB-231 cells decreased the incidence and reduced the size of tumors in an in vivo xenograft model. Histological examination of the shCoREST1 tumors revealed significantly reduced recruitment of both endothelial cells and macrophages. These changes in the tumor microenvironment correlated with reduced expression of pro-angiogenic and pro-inflammatory factors in CoREST1 knockdown cells. Our study implicates CoREST1 in both angiogenesis and the recruitment and activation of TAMs. Our cell culture and in vivo data significantly add to the understanding of CoREST1 in tumorigenesis beyond its described biochemical functions. Angiogenesis is essential for the growth of solid tumors. VEGF-A is a well-studied pro-angiogenic factor, and high levels of VEGF-A in breast cancers have been correlated with poor prognosis [46?8]. We found that VEGF-A mRNA and protein were reduced by knockdown of CoREST1 decreased tumor cell-mediated macrophage migration and activation. (A) F4/80 immunostaining, a marker of macrophage infiltration, was performed in tumors that grew from shCtrl and shCoREST (shCoR) cells. F4/80 expression (red) was quantified using ImageJ using five high power fields of DAPI positive nuclei (blue) from each tumor. Differences were determined using Student's t-test (n = 3 tumors/group). (B) Migration of HL-60 macrophages was measured in response to conditioned media (CM) from shCoR cells compared to shCtrl cells. HL-60 cells were differentiated into macrophages as described in Materials and Methods. Transwell migration of macrophages was quantified after 4 hr, and differences were determined by ANOVA analysis (n = 3 experiments in triplicate). (C) Migration of HL-60 macrophages was examined in response to CM from shCtrl cells supplemented with vehicle, a blocking antibody to CCL2, or RS504393, an inhibitor for the CCR2 receptor. Transwell migration of macrophages was quantified after 4 hr, and differences were determined by ANOVA analysis (n = 3 experiments in triplicate). (D) HUVEC tube formation was examined in response to CM collected from HL-60 macrophages activated with CM from either shCoR or shCtrl cells. Tubes from 3 high power fields (HPF) were averaged for each condition tested, and differences were determined by ANOVA analysis (n = 3 experiments). (E) HUVEC cell migration was measured following treatment with CM from macrophages activated with CM isolated from either shCoR or shCtrl cells. 22829914Wound closure was measured using ImageJ software 6 hr after scratching confluent cells as described in Materials and Methods. Data is expressed as % of wound closure as determined from an average of 10 replicates per condition (n = 3 experiments). (F) Proliferation of HUVEC cells was not altered in response to treatment with CM from macrophages activated with either shCtrl or shCoR CM. HUVEC were counted after 72 hr (n = 3 experiments).

Comments are closed.