Nny Chen, Lara H. El Touny, Constance Brignatz-Guittard, Justin Han, Tinghu Qiu, Howard H. Yang, Maxwell P. Lee, Min Zhu and Jeffrey E. GreenAbstractBackground: Oncogene overexpression in primary cells often triggers the induction of a cellular safeguard response promoting senescence or apoptosis. Secondary cooperating genetic events are generally required for oncogene-induced tumorigenesis to overcome these biologic obstacles. We employed comparative genomic hybridization for eight genetically engineered mouse models of mammary cancer to identify loci that might harbor genes that enhance oncogene-induced tumorigenesis. Results: Unlike many other mammary tumor models, the MMTV-Myc tumors displayed few copy number variants except for amplification of distal mouse chromosome 11 in 80 of the tumors (syntenic to human 17q23-qter often amplified in human breast cancer). Analyses of candidate genes located in this region identified JMJD6 as an epigenetic regulatory gene that cooperates with Myc to enhance tumorigenesis. PubMed ID:http://www.ncbi.nlm.nih.gov/pubmed/27488460 It suppresses Myc-induced apoptosis under varying stress conditions through inhibition of p19ARF messenger RNA (mRNA) and protein, leading to reduced levels of p53. JMJD6 binds to the p19ARF promoter and exerts its inhibitory function through demethylation of H4R3me2a. JMJD6 overexpression in MMTV-Myc cell lines increases tumor burden, induces EMT, and greatly enhances tumor metastasis. Importantly, we demonstrate that co-expression of high levels of JMJD6 and Myc is associated with poor prognosis for human ER+ breast cancer patients. RR6 cancer Conclusions: A novel epigenetic mechanism has been identified for how JMJD6 cooperates with Myc during oncogenic transformation. Combined high expression of Myc and JMJD6 confers a more aggressive phenotype in mouse and human tumors. Given the pleiotropic pro-tumorigenic activities of JMJD6, it may be useful as a prognostic factor and a therapeutic target for Myc-driven mammary tumorigenesis. Keywords: Mammary cancer, Myc, JMJD6, Copy number variants, Epigenetics, Tumor progressionBackground Tumorigenesis is a multistep process involving the accumulation of genetic aberrations. Initiating oncogenic alterations promote the selection of additional genetic and epigenetic changes that favor transformation, tumor growth, and metastases. Initiating oncogenic alterations in untransformed cells in most, if not all cases, trigger* Correspondence: [email protected] Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Building 37, Room 4054, 37 Convent Dr., Bethesda, MD 20892, USAcellular safeguard mechanisms that induce cellular senescence (e.g., Ras) or apoptosis (e.g., Myc, E2F1, or E1A). Therefore, oncogene-induced tumorigenesis generally requires cooperating genetic events to overcome these safeguard mechanisms. It has been firmly established that many genetically engineered mouse models (GEMs) of mammary cancer are valuable systems to dissect tumorigenic pathways that may involve multiple genetic aberrations. Many models have been designed to mimic human breast cancer by either overexpression of known oncogenes (Myc,?2016 Aprelikova et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the.