Remodeling. Cell 154, 311?24 (2013). 24. Betel, D., Koppal, A., Agius, P., Sander, C. Leslie, C. Complete modeling of microRNA targets predicts functional non-conserved and non-canonical web sites. Genome Biol. 11, R90 (2010). 25. Li, J. H., Liu, S., Zhou, H., Qu, L. H. Yang, J. H. starBase v2.0: decoding miRNAceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92 97 (2014). 26. Agarwal, V., Bell, G. W., Nam, J. W. Bartel, D. P. Predicting effective microRNA target internet sites in mammalian mRNAs. eLife 12, four (2015). 27. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. Segal, E. The role of internet site accessibility in microRNA target recognition. Nat. Genet. 39, 1278?284 (2007). 28. Huang, D. W., Sherman, B. T. Lempicki, R. A. Systematic and integrative evaluation of massive gene lists using DAVID Allura Red AC Biological Activity Bioinformatics AP-18 Data Sheet resources. Nat. Protoc. four, 44?7 (2009). 29. Huang, D. W., Sherman, B. T. Lempicki, R. A. Bioinformatics enrichment tools: paths toward the complete functional analysis of big gene lists. Nucleic Acids Res. 37, 1?three (2009).30. Zhang, K. et al. The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat. Cell. Biol. 15, 677?87 (2013). 31. Shin, S., Dimitri, C. A., Yoon, S. O., Dowdle, W. Blenis, J. ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation by means of DEF motif-dependent signaling events. Mol. Cell. 38, 114?27 (2010). 32. Botta, G. P., Reginato, M. J., Reichert, M., Rustgi, A. K. Lelkes, P. I. Constitutive KRasG12D activation of ERK2 particularly regulates 3D invasion of human pancreatic cancer cells by means of MMP-1. Mol. Cancer Res. ten, 183?96 (2012). 33. Radtke, S. et al. ERK2 but not ERK1 mediates HGF-induced motility in nonsmall cell lung carcinoma cell lines. J. Cell. Sci. 126, 2381?391 (2013). 34. Virtakoivu, R. et al. Vimentin-ERK signaling uncouples slug gene regulatory function. Cancer Res. 75, 2349?362 (2015). 35. Yang, C., Ning, S., Li, Z., Qin, X. Xu, W. miR-22 is down-regulated in esophageal squamous cell carcinoma and inhibits cell migration and invasion. Cancer Cell Int. 14, 138 (2014). 36. Pandey, A. K. et al. TIP60-miR-22 axis as a prognostic marker of breast cancer progression. Oncotarget six, 41290?1306 (2015). 37. Xu, D. et al. miR-22 represses cancer progression by inducing cellular senescence. J. Cell. Biol. 193, 409?24 (2011). 38. Li, B. et al. miRNA-22 suppresses colon cancer cell migration and invasion by inhibiting the expression of T-cell lymphoma invasion and metastasis 1 and matrix metalloproteinases 2 and 9. Oncol. Rep. 29, 1932?938 (2013). 39. Zhang, S. et al. MicroRNA-22 functions as a tumor suppressor by targeting SIRT1 in renal cell carcinoma. Oncol. Rep. 35, 559?67 (2016). 40. Li, W. et al. PFOS disturbs BDNF-ERK-CREB signalling in association with elevated MicroRNA-22 in SH-SY5Y cells. Biomed. Res. Int. 2015, 302653 (2015). 41. Yang, J. et al. microRNA-22 attenuates myocardial ischemia-reperfusion injury by way of an anti-inflammatory mechanism in rats. Exp. Ther. Med. 12, 3249?255 (2016). 42. Navandar, M. et al. ERK signalling modulates epigenome to drive epithelial to mesenchymal transition. Oncotarget eight, 29269?9281 (2017). 43. Han, M. et al. Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype by way of AKT/ERK1/2 inactivation by targeting PTEN. PLoS. One. 7, e39520 (2012). 44. Perlson, E. et al. Vimentin binding to phosphorylated Erk ste.